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STOCHASTIC BOUNDS ON DISTRIBUTIONS OF OPTIMAL VALUE FUNCTIONS

WITH APPLICATIONS TO PERT, NETWORK FLOWS AND RELIABILITY

Gideon Weiss

Georgia Institute of Technology and Tel Aviv University

Abstract

Meilijson and Nadas [1979] have obtained stochastic bounds in the

convex majorisation sense to the critical path length of a project

network with random activity durations. In this paper we present those

results in a more general framework and, using similar techniques, obtain

bounds for shortest route, maximal flow and reliability system lifetime.

Subject classification: #488 Bounds for stochastic networks

#672 Convex majorisation of project critical path length.

#725 Stochastic majorisation of reliability system lifetime.

Consider a set I = {,..., n} of n nodes, the base set. Let Ii.

... , I be subsets whose union is I, and no two of which are ordered by
k

inclusion; (11 1 4 j 4 k is a clutter over I. The blocking clutter to

4 J
[I} is a clutter J1 ,..., J zsuch that I r J pfor all r, s, and J

are minimal sets with this property, cf. Edmonds and Fulkerson [1970].

In a directed acyclic graph or in a two terminal network, the paths and

coqcuts are an example of a pair of blocking clutters. We call I a system,

.1
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and {I 1 J < k, [J} I < j 4 £ the paths and cuts of the system. Let

a weight X be associated with each node i of system I. In many

combinatorial optimization problems the system has an optimal value

function, a function of XI..., X, which is defined by the clutter of
1'

paths or of cuts. To illustrate:

- Critical path of a PERT network (Elmaghraby [1977]): the nodes

represent activities, the weights activity durations, the network the

precedence constraints. The critical path length is the shortest time

needed to complete the project, given by

M max E (i)
l<j~k isl.

J

over the clutter of paths.

Maximal flow (Ford and Fulkerson [1962], Lawler [1976]): the nodes

represent pipelines, the weights maximal flow capacities. The maximal

flow through a network from source to sink is:

L = min E X (2)
l~j4£ iEJj.

over the clutter of cuts.

- Shortest route (Ford and Fulkerson [1962], Lawler [1976]): the nodes

represent sections of routes, the weights their lengths, the network

their connections; the shortest route from source to sink is given by L,

over the clutter of paths.

- Reliability system lifetime (Barlow and Proschan [1975]): the nodes.9I

represent components, the weights their lifetimes. The system lifetime

can be expressed in terms of the paths {.} or the cuts {J} as:

T = max min X min max X (3)
lrj~k mtI l<J~t i6J

The formulation of M, L, T via clutters applies equally well to

structures more general than networks, e.g. precedence relations among
*1.j

U- 7.
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project activities can be defined by any partial order, and a reliability

system can be defined by any Boolean coherent structure function. The

equality (3) holds for any pair of blocking clutters, cf. Edmonds and

Fulkerson [1970].

The stochastic behaviour of the optimal value functions M, L and T I

is introduced as follows. Let the weights X1 ..., Xn be random

variables, with marginal distribution functions FI,..., Fn and a joint

distribution P. Then M, L, T are random variables. It is extremely

difficult to obtain the distributions of M, L, T - this is so even in the

case where XI, • X are independent, since different I.'s will in
n j

general have nodes in common and not be independent. Nor is it any

easier to determine single values such as E(V), P(V > y), E(V - y) where
++

V is any of M, L or T (here z = max (z, 0), z = (-z)+). Let denote

the family of all the joint distributions of XI ,..., Xn with the given

marginal distributions F1 ,..., F. The subject of this paper is the

investigation of:

T(x) = sup E(M-x)+

n(x) = sup E(L-x) (4)p. 5..

a(x) = su P(T>x)

P
8(x) = sup P(T~x)

We show how each of the functions T, n, a, 8 can be calculated as the

solution to an appropriate mathematical programming problem which is in

general substantially easier than the calculation of E(M-x)+ , E(L - x)

or P(T > x) for a particular P e P. The suprema in (4) are attained for

every x, that is, for every x there exists a joint distribution P for

which '(x) = E(M- x) +
, and similar distributions attain the supremum for ,.%
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n, a, a. The joint distributions which attain these suprema can be chosen to

have a special form. Define the inverse of a distribution function as .0%

-. I
F (u) = inf {x I F (x) u}

and let U be a uniform random variable on (0, 1). Then X1 ,..., X = FI I

X, n1

F. 1 ( (U)), where U is common to all the nodes, and the functions
n n

i''''' n are piecewise linear, with a finite, not exceeding max (k, Z),

number of discontinuities. pi''''' n are obtained explicitly from the

solution of the mathematical programming problems, together with additional

structural information about the system.

The functions 'P, n, a, a can be used to define random variables M, L, T .4

and T as follows:

E(M - x)+  = (x)

E(_ - x) =.

(5)
P(T > x) a(x)

P(T 4 x) = (x)

By their definition (4, 5), M is convexly greater, L is concavely smaller,

(T) is stochastically greater (smaller) than M, L, T respectively, for any

distribution P e p

The definitions of X stochastically greater than Y (X ST Y) and of X

convexly (concavely) greater than Y (X> Y (X <k Y)) are (cf Stoyan [19831):

X ST Y <=> Yx P(X > x) > P(Y > x) <=> Eh(x) > Eh(Y) Yh nondecreasing

X o Y <=> Yx E(X - x) > E(Y - x) <=> Eh(X) > Eh(Y) Vh convex nondecreasing
c

X k Y <> Yx E(X - x) < E(Y - x) <=- Eh(X) > Eh(Y) Vh concave nondecreasing

<=> Yx E(x - X)+ < E(x - Y)+ <: Eh(X) < Eh(Y) Vh convex nonincreasing

<=>-X 4-Y
c

j F

-I
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We say that the random variables M, L, T, (T) are convex upper,

concave lower and stochastic upper (lower) bounds for M, L, T. Clearly

by (4, 5) they are sharp bounds, in the sense that if for example Z > M

for every P e P, then Z >c M. By the properties of >ST' > k Eh(M), %

Eh(L), Eh(T), Eh(T) provide bounds for Eh(M), Eh(L), Eh(T) for every

P E p , whenever h has the appropriate monotonicity and convexity

properties; these bounds are not necessarily sharp, unless M, L, T, T are

obtained within 4-
In general, M, L, T and T are not obtained within 3 . If however the

system is series parallel, then there exist joint distributions in p for

which M = K, or L = L or T T, T T; bounds for series parallel systems

are discussed in section 1, together with a discussion of modular

decomposition. In sections 2, 3, 4 we discuss each of the optimal value

functions, M, L and T separately. We conclude in section 5 with some

general remarks on the type of bounds presented in this paper, and with a

comparison with other types of bounds which appear in the literature.

The present work is based on a paper of Meilijson and Nadas [1979],

who derived the properties of T(x). Some of the results on cx), 8(x)

have been previously obtained by Zemel [1982]. A brief summary of the .* 4.

present paper appeared in Weiss [1984]. Some related results and

extensions appeared in klein Haneveld [19821, and Meilijson [1984].

1. Bounds for Series Parallel Systems.

The pure series system with nodes I,..., n has a single path I =

I ... n} and n singleton cuts, = {i},... J = (n}. The pure

parallel system has paths I (n), and a single cut =

(i,..., n}. For the pure series system, M E = T =min X For

i=l i cIn

nthe pure parallel system M = T = max Xi. L = Z X

I (i n i=l

. . ... ..
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The following three special joint distributions of X,..., X are

essential in this paper; they provide the bounds for the pure series and

the pure parallel systems (U is a uniform random variable on (0, 1),

(x) = 1 - F(x) =P(X > x)):

- The "perfect tracking" distribution P*: ,, X = (U),...,

F (U).
n

- The "max antithetic" distribution P** defined inductively for n = 2

by X1 , X = F1  (U), F2  (1-U) and, given P** for XI,..., Xn_ and Yn-i

= max Xi, X and Y are distributed by Y X l(U), F (1-U).
l~~nl . n n-i n-i' n = n~() F (-)n--°

- The "min antithetic" distribution P*** defined similarly to P** with

Z = min Xi replacing n-Zn-i Li n-i ni l'

It is easy to check that P* (P**) stochastically minimises (maximises)

max Xi, and P*(P***) stochastically maximises (minimises) min X over

by achieving equality in:

n
max Fi (x) 4 P (min X ' x) min (1, E Fi(x))

.- n
max Fi (x) < P (max Xi > x) < min (1, E Fi(x)).
1i n 1 <i <n i=l".

Also, P* convexly maximizes and at the same time concavely minimizes

n
E X as is seen by the following argument: For every x and v and every

s . i=l

P E P

n n n +E X Xi -x) + < E v I - x)++ E. (X i - vd)

i=l i=l i=l

.. n +n + n+

(x - Xi)+ < (x - vi)+ + E (v1 - Xd
i=l i=l i=l

d

-.'
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n -

On the other hand, note that E Fi (u) is left continuous non-
C. i=l

n
decreasing in u, so for given x we can choose u0 such that F (u) x

oi;:
i=l

n -v
E Fi (uo+), and we can then choose v for i = I,.., n for which

i= ".

n

Fi (u) v i  F i (uo+), so that E vi = x. Using those vi  for X =
i=-

Fi (u), i = 1,., n as in P*, the above inequalities hold as equalities.

These properties of P*, P**, P*** ensure that the various bounds are

obtained within P in the pure series and in the pure parallel case.

Theorem 1.1: For the pure series system, M and T are obtained by P , L

and T are obtained by P***, and L <ST L for all P e P . For the pure

parallel system, M and T are obtained by P**, L and T by P*, and M >ST M

for all P e P.

A useful concept in the theory of networks or clutters is that of

decomposition into modules (or autonomous sets), as discussed by Barlow

and Proschen [1975] and by Mohring and Radermacher [19841. Consider a
-,o* * * * *

set I , I c I, and let Il , . . . , I be all the different subsets of I of
• j *

the form I n 1 4 j < k. Then, I is a module of the system I if:

(i) II ,... I form a clutter.
* **

(fi) Whenever Ii n I = I. it follows that for every r, 1 r .m
3

there exists an s, I r s < k, such that (I- ) U I I
r s

The module I is called nontrivial if it has more than 1 and less than

n nodes. The quotient system I/I is formed by replacing all the nodes

of I in I by a single new node o, with a similar replacement in each

path of the clutter {T. . It is maybe more intuitive to think of a

system, module, and quotient system in the reverse order: Start with the

quotient system and the module (those can be any two systems), choose a

node in the quotient system (node o can be any node) and replace this

............................... .. . . .. . .



8

node by the base set of the module; then augment the clutter of the

quotient system, by replacing each path which contains o with m new paths
* * *r-

-

in which o is replaced by Ilp**) 1 . For a nontrivial module I , call I

a modular composition of I, I/I and call I , I/I a modular

decomposition of I.

Mohring and Radermacher [1984] discuss the preservation of M, L, T

under modular composition. Let V represent any of the optimal value

functions M, L or T. For weights Xl,... , Xn, let V, V be the optimal

values for the system I and the module I Then V can also be calculated

in steps: Obtain V*, assign the value V as the weight of node o in I/I

calculate the optimal value for I/I For XI,..., X random with joint
*n

distribution P E p , V and V are random variables. The distribution of V

can be calculated in steps: Obtain the joint distribution of V , assigned

to node o, joint with the weights of the other nodes of I/I , and obtain the

distribution of the optimal value of I/I for that joint distribution.

In the following sections we prove that modular composition also

preserves the bounds M, L, T, T. We show for each of the optimal value

functions that:

Theorem 1.2: If module I is replaced by the single node o, with

weight X that has as its marginal distribution the distribution of the
0

* *"-

bound for I , then the bounds for I/I and for I are identical.

A general series parallel system is defined (inductively in the

number of nodes n) as a system which is either pure series or pure

parallel or has a nontrivial module I and quotient system I/I both of

which are series parallel. Combining theorems 1.1 and 1.2 we have:

Theorem 1.3: For a series parallel system the bounds M, L, T, T are

obtained by joint distributions within P
Proof: Combining theorems 1.2 and 1.1 provides a direct construc-

tion of the joint distributions for which M, L and T are extremal.

-' - - . .1 -4 . . . - . - - - '
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2. Convex Upper Bounds for Critical Path Length

In this section we discuss the optimal value function

M= max Z X
l<j-k inI. .

J

where I = {1,..., n}, Il,... , Ik is a clutter over I, and Xl,..., X
k' n

have marginal distributions FI,..., Fn and a joint distribution P c P

(the dependence of M on P is suppressed to simplify notation). We start

by quoting the results of Meilijson and Nadas [1979].

Let T(x) be defined by:

(x)= inft( max E vi - x) + E. E(Xi - vi)+} (6)
v lj<k i l. i £l

and let x 0 inf {x ''(x) > -1}. It turns out that the calculation

of (6) for x > x is equivalent to the solution of the following0

mathematical program with a separable convex objective function and

linear constraints:

T(x) = min E(X - V)(7)
v i F-I

st.. j = 1, ... , k.

i J

Denote by Xl,.., Xk the Lagrange multipliers (dual variables) of the ..

constraints.

Theorem 2.1:

+
(i) T(x) = sup E(M- x)

P-
(ii) There exists a random variable M such that for all x,

r.

+
T(x) = E(M - x) , and M > M for all P c P.

(iii) For every x there exists a P E for which E(M - x)+ =(x).

(iv) A particular P c . satisfying (iii) is of the form X 1 .. X
S ' n

FII(p 1 (U)),..., Fn ( n (U)), where U U(O, I), and 'i have at

most k discontinuities and are linear inbetween.

--.............
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(v) For every x and P as in (iv), the Lagrange multipliers of (7)

satisfy:

i . (P(M > x, E Xi = M)
ic

With equality if all Fi s are non atomic (absolutely continuous).

(vi) The constant max E E (Xi) is convexly smaller than M for all
Sl<j~k iE:.

P s p ; in particular it is < E(M). "

Outline of the proof: (i) For every x and every vector v, for every

- joint distribution P E P and every realisation Xl,..., Xn drawn from P:
nn

(M - x)+ (max vi- x)+ + E (X vi)+ (8)
j isl. i1

which shows that the right hand side of (6) is o E(M - x)+ for every

P E P. Equality to the supremum over P follows from (iii).

(ii) Examination of (6) shows that T(x) is convex nonincreasing in x

with slopes tending to -1 and 0 as x tends to -- and -. Hence 'F(x)

defines a random variable M according to (5), and M > M for all P e P.

For x > xo, v which minimises (6) satisfies max E vi = x, and so it
lj<k il.

minimises (7), and (6) and (7) are equivalent. The solution of (7) at

0
xo, say v , minimises (6) for all x < x.0" 0

(iii, iv) Consider the Lagrangean of (7):

n k
'i(v, X, x) = Z E(Xi - vi)+ + . X. ( 7 v.- x) (9)

il j=l icI.

with X. 0 0. The Kuhn Tucker saddle point conditions for it are:
J

E vi < x and E vi < x implies X 0
Si E. i I.

P(Xi > vi) X 4 j P(X 0 v) (10)
j IE ij i

k
P(M > x) 4 E Xj 4 P(M 0 x).

j=l



For a given x > xo, let v i ,  vn  be an optimal
n V1 **)V

k .

solution and a set of multipliers of (7,9). Let Ak+l =  A E A VJl

'k+l = c, a E Ais i = I,..., n. The joint distribution P c p

ci
stated in (iv) is defined by the functions i ,.,n which for

1 l m,*.
m = ,...,k+ 1 and Z X < u E A i have the value:

j=l a j=l

M7- 1

(1 - i) + ai (u - 1 Aj)/Am  i elm

4)(u)=
Si~u = m-l (11)

",". ~~~~~~(1-ai ) (u- ; l i1I".,

j I m m

.- 7 1- m "

(v) For A m O, with probability A, E x < U < E A in which
i=l i=1

case I - a < (U) < 1, and by (10) X, F ( i(U)) o vi, for all i e

I while at the same time, X e v for all i I r. By (8), we see that

in this case M - x = E (Xi - vi) and E vi =X, so M = E X 0 x.

m m m-

The required inequality follows, and equality for nonatomic distributions

follows similarly. Finally, (vi) holds by Jensen's inequality.

Corollary 2.2. Modular decomposition: Theorem 1.2 holds for the function

M.

Proof: Let I c I with clutter I,..., I be a module of 1, and let I/I
m*

be the quotient system, with set of nodes I (I - I ) U {o} and clutter

of paths . Let T, ' Ti and M, Mo, MI denote the bounds for

the systems I, I, I/I respectively. We look at the program (7) and the

two additional programs:

. 0(y) = min E , E(Xi - ui) +

s.t. E * u1 ( y J = 1,..., m (12)

- -1
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U 12
and:

+
Tl(x) = mi E (Xi - w + To)(w)

w i CI-I

s.t. E wi 4 x j = 1,..., £ (13)
i t.

o + + ' .Since To(w) E( -W) = E(X-w) , (x) is the bound for the module0 0 0 0 0 0

I/I • We need to show that '(x) = 1l(x) for all x.

(M) '(x) > Tl(x): Let v be an optimal solution of (7).

Define:

w = max v0 l1j~n isl*
J

wi  = v I  i I -I •-..It%" *

Because I is a module, and v is feasible for (7), w is feasible for (13).

The value of the objective function (13) for w is E * E(X1 - vi)+ +

i st-I

To(W). But {v} i c I is feasible for (12) with y = wo, and so To(W) .
0 0 0 0 0

z I , E(Xi - vi)+, so the value of the objective of (13) for w is < T(x),

i CI

and therefore Yl(x) 4 T(x).

(ii) T 1(x) > '(x): Let w be an optimal solution of (13). Let u be an

optimal solution of (12), with y = w0 . Let vi = ui, i 5 I , and "

vI = wi, 1 s I I I . Because I is a module, v is feasible for (7). The

objective value of (7) for v is

+ + +
E E(x i  vi) = E E(Xi wi) + Z E(Xi- ui)

i I i *,-I i El

= (Xi- wi) + o 0(w) =

thus '(x) < TW.,

Monotonicity:

Corollary 2.3: If X are replaced by Z so that Z > X i= n

' I"

• • ."', .'..'.";,". ";. .;' "."'."'.'.'," "" "" "" "'.'" "V-'..'." , "'. ."."2 5 ",_"," '.' -"-:'', ' ,
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then the bounds MIt M obtained for Z, ... , Z and X.,..., X satisfy M >1' n n 1 c

Proof: Let T1(x), be the solution of (7) with Zi replacingn
1 

(v)
I )

n ?)

X. By Z > X '(x) = Z - v i (x). Minimising (7) with
95* i=1

Xi. we get '(x) 4 i(x) I 1 (x), so for all x, E(M - x) < E(M1 - x)

Computational Aspects: Nadas [1979] discusses the computational aspects of

solving the mathematical program (7), which with its linear constraints and

separable convex objective function is relaively easy. If E(Xi - vi)+ is

approximated from above by i(vi) piecewise linear and convex, the program

can be solved as a linear program, and provide an upper bound for Y(x).

The approximation is equivalent to replacing each Fi by an approximating

discrete distribution, aud it can be chosen so that 0 < %(v) - E(Xi - v)+

" 6 for any given 6 > o, uniformly for all v.

In the project planning application, the nodes represent activities

and the clutter 1i,- , Ik is defined by the partial ordering of

activities, and consists of all the paths from the start to the finish of

the job. In that case the program (7) has the following deterministic

interpretation: Find activity durations vl,..., v so as to complete the
n

whole project by time x at minimal cost, where doing activity i in duration

vi costs E(Xi - This is the project cost curve problem, solved by

L. Fulkerson [1961]. The solution is effected, parametrically for all x, by

formulating the dual problem which is a minimal cost flow problem, and

solving it parametrically for all flow values; this can be done by the very

efficient out of kilter method, cf. Lawler [19761. The minimal cost flow

problem that arises from the dual to (7) is: For any total flow value A,

find flows a through the nodes i, i 1,..., n which yield total flow A,

at minimal cost, that is:
.4 C..

5'

54

i ,45
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n
min E h (aail

(14)

s.t. min = A i = I,..., n
l<j(2. iEJ~

Where J'...'" J is the blocking clutter of cuts, and where:

h( a) f 0 max (Fi(t) - a, 0) dt = T Fi (u) du. (15)

The total flow value A, and the flows through the nodes a,, which are

obtained from the solution of (14), are related to the X 's in (9), (10)

k
through A = E X., ai = E X.. The corresponding values of x and the

j=l ilia j

vi's in (7) can be obtained from (10).

Redesign of a PERT network: It is quite usual when designing a project

with a PERT network to have a target date x for the completion of the

project, and a nondecreasing convex penalty function C(y) for values M = y

x. For such a penalty function,

E(C) = C'(x) T(x) +fCC"(y) T(y)dy (16)
x

where C', C" are the Ist and 2nd derivatives of C, is an upper bound on the

expected penalty.

For the target date x, the expected tardiness E(M - x)+ is bounded

sharply by T(x), and the solution of (7) provides a construction for the

worst case distribution with respect to that tardiness. It also provides a

host of additional information on that worst case distribution which can be

used to redesign the project. Let v = v(x) = vi(x),...,vn(x) be the values

of the solution of (7), Xl(x),...,Xk (x) the Lagrange multipliers, and

ai(x) E (x), i =, ... , n.

%i...Cij
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The values v (x) provide target durations for the activities with

respect to the general target date x. If we let Ti(x) = E(Xi - vi(x))+

then Ti (x) is the expected contribution of node i (activity i) to the
* t.

total tardiness. Similarly, for a module I we get by solving (13) for

I/I and due date x, a value w (x) which is the target duration of the
*o

module I with respect to the general target date x, and we can get T ,(x)

SE(M - w (x)) (obtained by solving (12), with y = w (x)), as the

* expected contribution of module I to the total tardiness. If Ti(x) or

, (x) is inserted in (16) instead of T, we obtain Ei(C) and E , (C) which

are the worst case bounds on the expected contribution of i or I to the

penalty. Thus the v (x) and w (x) provide a way of assigning tardiness and
1 0

penalties to each activity or module (on the basis of a worst case

analysis).

The values X.(x) provide, for the worst case distribution, the

probability that tardiness beyond x occurs, and that the longest path is I.

(at least if all X,'s are continuous random variables), as stated in

theorem 2.1. It is also easy to see from the proof of theorem 2.1 that

a i(x) is the probability that tardiness beyond x occurs and that node i is

on the longest path.

Similar quantities can be calculated for a module I . Solution of

. (12) with y = wo(x) provides X's and a's within I . Solution of (13) for
*0

I/I , provides by the value a (x) the probability that tardiness beyond x

occurs and the longest path passes through I

3. Concave Lower Bounds for Maximal Flow and Shortest Route

In this section we discuss the optimal value function

L= min E Xil <.J x i clj '
• <2 "-i

p

,. I. . . - : - . . , .. . ' . - . .. . . . .... . .. .. , '- . ..-. . . ."- . - './ ' . ,).
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where I n (1,..., , .' J is a clutter over I, and XI,..., X have

marginal distributions Fl . F and a joint distribution P e P . When

Jl ."' JX are the clutter of paths in a network, L is the shortest

route; when Jl,'''' 3 are the clutter of cuts in a network, L is the

maximal flow. The results about L exactly mirror the results about M in

section 2. This is due to the duality between the various pairs of

concepts occuring here: path-cuts, series-parallel, min-max, convex-

concave, P(X < x) - P(X < x), and E(X - x) E(X - x)

The function n(x) in (4) is given by:

n n
n(x) = inf {(x - min v) + + E E(vi - Xi) + }  (17)

v l<j.Q£ i Ej

and for x < x = sup{xj n'(x) < 1}, (17) is equivalent to

n(x) = min E E(v i - X 1 ) +  (18)
v iel

s.t. E vi > x j .......,
i Ej

* with Lagrange multipliers X'... X .

Theorem 3.1:

(i) n(x) = sup E(x - Q)+

p
(ii) There exists a random variable L such that for all x, n(x)

= E(x - L), and L L for all P E p.

(iii) For every x there exists a P c P for which E(x - L)+ = j(x).

. (iv) A particular P e P satisfying (iii) is of the form: XI ..* Xn

F F (U)), where U - U(O, 1), and have at1 n "n

most X discontinuities and are linear in between.

(v) For every x 4 x and P as in (iv), the Lagrange multipliers of

(18) satisfy:

Xj < P(L j x, Z Xj = Q

with equality if all F 's are non atomic (absolutely continuous).
• i

m a~

-- ?,~
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(vi) The constant min E E(X ) is concavely larger than L for all
,. l~j £ icJj

P C P ; in particular it is > E(L).

Proof: This is a corollary of theorem 2.1, if the problem is reformulated

in terms of -Xi, with -L = max .(-Xi).
lj x iCIj

The modular decomposition theorem 1.2 and monotonicity (with respect to

k) hold for L, in analogy with M.

Computational Aspects: The program (18) has a separable convex

nondecreasing objective function and linear constraints, and can be

approximated by a linear program, like (7).

For the shortest route application, the solution of (18) can be

obtained by using Yi = - Xi. and solving (7).

For the maximal flow application, when J,' ... ' J are cuts, problem

(18) has the following deterministic interpretation: Find flows (or

capacities) vi for nodes i = 1, ... , n, so as to obtain a flow (maximal

flow) of x, at minimal cost, where the cost of flow vI in node i is given
+i

by E(vi - Xi) + , which is convex nondecreasing in vi. This deterministic

problem is very similar to the dual problem for the project planning

application, given by (14). It can be solved parametrically for all flow

values x, using the out of kilter method, cf Lawler [1976].

;In applications to shortest route problems one may have a design value

x and a convex decreasing reward function C(y) for values of L = y. In

applications to maximal flow problems one may have a target flow x and a

convex decreasing penalty function C(y) for value of L = y 4 x. n(x) and L

provide upper bounds for the expected shortfall below x, E(x - L) and of

E(C(L)). The solution of (18) provides similar information for redesign as

in the critical path applications.

• p- ,

-.- '-.-,
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4. Stochastic Upper and Lower Bounds for Reliability System Lifetime

In this section we discuss the optimal value functions

T' - max min X1  (19)
14j <k iElI

and

T" = min max X (20)
l4j~U. i eJ

where I = {l,...,n}, I.,... Ik and Jl'''" JX are two clutters over I, and

XI,... , Xn have marginal distributions FI,... , F with joint distribution

function P c p. If I19*.. I k are the paths and Jl...', J are the cuts

of a reliability system (defined through a network or through a generalH: Boolean coherent structure function as in Barlow and Proschan [1975]), and

also for any other pair of blocking clutters as shown by Edmonds and

Fulkerson [1970], T' = T". For a reliability system, if nodes 1,..., n

represent components, and XI,..., X are the component lifetimes then T
n

T'= T" is the system lifetime.

We will show that the supremum functions o(x) and i(x) of (4) are

given by solution of the following linear programming problems:

k
a(x) = max Z X.

X j=l i

"s-t. E Xj 4 Fi(x) i 1,...,n (21)

k
E X. I1

. j=l J

,,--l X 0o

. and

O(x) = max j
-. j=l

s.t. E Pi Fi(x) i = 1,..., n (22)

.9. j-l J
. . - . *

.,' : J.1 J

.0-. , . . . , . . .. > ,.< .
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where F i(x) I l F i(X) =P(X 1 > x). The analogy with the programs (7)

and (18) is seen in the dual programs to (21), (22):

n_I ca(x) -min E F~ (x) v~ + w
v i-l

S.t. Z V + w >1 j l..k (23)

i EI

n p

a(x) min E F.(x)u + w
i i I i

S.t. E u~ + w > 1 j =1.,9.(24)
iEJ

wiui >

The following theorem is implied in parts by Zemel [1982].

Theorem 4.1:

Ci) ai(x) =sup P(T' > x), (x) = sup P(T'' 4 x).

(ii) There exist random variables TadT such that for all x, a(x)

P(T > x) , a(x) P(T <x) , i.e. > S T' and T T'' for all P E:
ST cS T

(iii) For every x there exist P', P"' e for which P(T' > x) a c(x),

P(" x) O )

(iv) In particular P', P" e satisfying (iii) exist which are of the

1or n = F-1 (U)),..., Fn 1 (~nU)), where U -UCO, 1) and

have at most max(n, k) (max(n, X.)) discontinuities and are linear

inbetween.

(v) For every x and P', P'' as in (iv), the solutions (21), (22) satisfy

X < P(T' x, minx = T')

4 P (T" 4 x, max xi =T")

with equality if all F 's are non atomic (absolutely continuous).
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Proof: (ii) From the form of the objective functions of (21), (22) U(x) is

nonincreasing and B(x) is nondecreasing. From (23), (24) 0 4 a(x) - I and

0 4 S (x) 1 1. From (23) (24) one obtains a(--) = a(-) = 0, and from

(21), (22) 1-) = 5(c) = 1. a(x) and 5(x) depend continuously on F i(x),

which are continuous from the right, hence a(x) and 5(x) are continuous

* from the right. Thus 1 - a(x) and a(x) are distribution functions,

defining T and T.

-. (iii)(iv), We shall describe the construction of members of P as stated in

(iv). For given x, let X (p) be the optimal basic solution of (24) ((22)).

k 2
0'k Let X+l = 1- E X., +I  i- E '' Ik+l = =

jl j=l

and let:

a = (x)
j,

Bi = g j Fi (x), .

M~ I ~IE:J~

and define for each i = 1,..., n the following functions for 0 < u 1:

m-1 m
If E X. < u 4 E Xj, and X + 0, (1 4 m • k + 1):

j=l j=-

m-1

( al - i) (u - E Xj)/ i m

and if jE j <u l Z '= and m_ O (1 € m • £+ 1):

J J m1

j= Cu - k~
M-1 mm1

"': I (u -jE 1 llj)/hm i E J m

:" *i (u)=

a + (1 - ( Cu - l j)/Pm i k Jj=l

00 ._
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It is clear from the construction that F. 1 0)) and F i  0 U))

i

are both distri.)uted as X if U - U(O,1) and we have P', P'' c p. With

m-i m m-I m
probability Xm (0m) E X A. < U < E A. ( E j ( U • c j.), and in that

j=l j=l j=l j--1

case, 4 (U) > i - aip Fi(x) ( j' (U) < ail Ft (x)) so X, > x (Xi < x) for

all i s I (1 6 J m). But then min Xi > x (max X r x) and so T' > x
m i61m iIm 1

(T'' 4 x). Thus a(x) < P (T' > x) and a(x) < P(T'' x) for P' and P''

respectively, with equality actually occuring because of (i).

(i) We prove (i) for a(x), the proof for a(x) is analogous. Define for

each j = I,..., k, A = f {X. > x}, Ac the complement event of Aj, and
iJI.

3

define for each # K c I k} BK = n A r) Ac. Let 'K = P(BK)
K K , ja ,K

for an arbitrary P 6 P. Then P(T > x) = P( A) = P(U B . Let
j K K K . eK

i be some node in I. Then if i c Ij and j c K, BK c (Xi > x}, hence

* < F,(x) i = I,..., n (25)

where the summation is over all K's such that i c Ij, j c K for some j.

If we set up the program

U max E X (26)

K

s.t. (25) and E AK  1, AK ( 0 (26)

K

then the solution is > P(T' > x) for all P c . The linear program (26)

has a variable XK for each subset K c {i..., k}. In particular this

includes Ai'''" , Xk which correspond to the singletons.

Consider any K which is not a singleton, say K D {i, j}. Then the

variable XK appears in every constraint in which X. or Xj appear. It is

* ."." . -' - . _ " -: ' '' :1 . -, ,e 'f " "" , . 1 ' ",' ", ' ", . , ' " ' ""
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then clear (by examining the dual problem) that X need not be basic in

an optimal solution, and so it is a redundant variable. Thus (21) has

the same solution as (26) and so a(x) > P(T' > x). This completes the

proof.

Modular decomposition and Monotonicity: hold for a(x), (x) as for T,

Tq.

Computational aspects: The main difficulty in solving the LP's (21), (22),

is the number of variables, one for each path, which may grow exponentially

with the number of nodes. Consider solution by the simplex method. Then

one can avoid the necessity of handling such a large number of variables,

by using column generation, as follows: Let X be a basic feasible solution

to (21) and let v be its simplex multipliers; assume E X. < l and so w =0.J

*- This solution is optimal if v is dual feasible, that is

Sv i j =,...,k
I.

to check that, one can solve the shortest route problem with the weights

v If the solution is < 1, it gives a new path I for which X. shouldvi • j J

enter the basis.

The solution for all values of x can again be done using parametric

LP.

Zemel [1982] has shown that if the shortest route problem, min
1 j rk

E vi, can be solved in polynomial time then so can the LP (21), by
I.. lj

employing an ellipsoid type algorithm. In particular, for a two terminal

network the shortest route problem is indeed polynomial. This is in
JI

Ile - .. : '-' .v , -- .-- . . ..,- ." ..". ". .," .• - . .. .." .." ," . . " ..• . , .".". ..". ,
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sharp contrast to the fact that the calculation of the reliability of a

two terminal network with independent components is NP hard, as shown by

Rosenthal [1975], Ball [1980] and Valiant [1979]. This great difference

in difficulty of calculation between the independent case and the bounds

of the present paper is the most remarkable feature of these bounds.

Redesign of a reliability system: The solution of (21, 22, 23, 24)

provides similar information for redesigning the reliability system as we

had for M and L. Typically one may have a target system lifetime x and be

.- interested in P(T > x). Else one may have a monotone decreasing penalty

function C1 (y) for T = y x, or a monotone increasing reward function

2 (y) for T y >x, with (C'1 , C12 are the derivatives of C, C:

E(CI) = C )(x)a(x) +_x_ - C{(y) 3(y)dy
(27)

"(C2= C2 (x)a(x) + x C (y)a(y)dy

providing upper bounds for penalty or reward.

If 3(x), c(x) are replaced by u.(x) Fi(x) and by vi(x) Fi(x) in (27)
1 1 i i

where u(x), v(x) are the solutions to (24), (23), one gets an assignment

of penalties or rewards to the various nodes for the extreme cases.

Similar assignments are obtained for modules. The probabilistic

interpretations of X., p., ai, can also be used in redesign, as in

section 2.

5. Discussion

In this paper we have developed various bounds of various types for

the optimal value functions M, L, T. It is fortunate that each of those

bounds is exactly of the type most useful in application. The bounds for

T are stochastic, so that given a target date x we have upper and lower

U#

*1
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bounds on the system rejiability P(T > x) at the date x. The bound for M

is an upper bound in the convex majorisation sense, which in the critical
'.

path length application gives an upper bound to the expected tardiness

beyond a target day x, E(M - x)+ . The bound on L is a lower bound in the

concave majorisation sense, which in the maximal flow application gives an

upper bound on the expected shortfall of the flow below a target level x,

E(x - L)

For aesthetic reasons, or for some unforeseen applications one would

nevertheless desire the bounds not obtained here, i.e. stochastic bounds

on M, L, convex lower and concave upper bounds on M and L respectively,

and convex and concave bounds for T. In the following discussion we

explain why these are unlikely to possess the same nice properties as the

bounds already obtained.

In section 1 we introduced three special join! distributions, the

perfect tracking distribution, P , and the max and min antithetic

distributions, P , P , which achieve the various bounds for the pure

series and the pure parallel system. We state the following simple lemma:

Lemma 5.1: Let ||1be a family of distributions. If M* e in satisfies

M*> M for all M c I1, then there is no member M e jfl for which M > M for
c S

all M c Il unless M = M*.
* - - * i

Proof: Assume existence of M. Then M > M > M, so M > M > M, so

E (X - x) = E (X - x) for all x, and M = M*.

Since P* does not in general stochastically majorize or stochastically

minorize E X (the only exclusions one can think of are when n-1 of the jt.
variables are deterministic andp has only one member), stochastic bounds

on M (L) in the purely series (purely parallel) case will not be obtained

within p.

AV
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We do not know how to construct convex lower bounds or concave upper

n
bounds for r X i  Such bounds if they exist within will minimize the

n
variance of E X and will provide the optimum distributions for variance

i=l.

reduction in Monte Carlo simulation, as discussed by Hammerseley and

Mauldon [19501, Handscomb [1958] and Whitt [1976].

Next we note that M is nondecreasing convex, L is nondecreasing

concave and T, T" are nondecreasing but neither convex nor concave. The

generalization of the bounds from the pure series or pure parallel case to

general series parallel systems and the property of modular decomposition

follow from the fact that c ,k' are preserved respectively by non-k ST

decreasing convex, nondecreasing concave and nondecreasing functions. We

cannot however expect the same to hold for concave bounds on M, convex

bounds on L or convex and concave bounds on T, T'. The stochastic bounds

on T if obtained within P are of course also sharp convex and concave

bounds. If they are obtained outside P we do not know how to construct

sharp convex or concave bounds.

The bounds discussed in the present paper provide one way of

circumventing the impossible problem of calculating the exact distributions

of M, L or T. We conclude by mentioning other approaches that appear in

the literature. These are based on special models for which the

distributions of M, L and T are tractable, namely:

- Markovian systems: If the weights have independent exponential

distributions then M, L, T have phase type distributions in the sense of

Neuts [1981], and their distributions can be evaluated, though at

considerable computational effort, e.g, Kulkarni and Adlakha [1984].

*,* . .. . ..- A -. . *
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V- Series Parallel systems with independent weights: The

distributions of M, L, T are obtained by convolutions products and

if complementations.

- "Perfect tracking" (Nadas [1979]): Each weight Xi is of the form

X, = ai + bi Z, i = I,..., n, where Z is a single random variable, common

to all the Xi's. If p = P(Z < z), then the p percentiles of M, L, T are

obtained from the values xi = a + bi z.

By approximating F., .., Fn with phase type distributions one can

presumably get bounds on M, L or T using the first approach.

Series parallel systems form the basis for calculations of bounds on

values of P(V > y) where V is M, L or T - see Robillard & Trahan [1977],

Shogan [1977], Devroye [19791 for PERT and shortest route applications, and

Barlow and Proschan [1975], Esary & Proschan [19701, Shogan [19781, Natvig

[1980] for reliability applications.

The approach of the present paper utilises the third approach of

perfect tracking.

Acknowledgements: I am most grateful to I. Meilijson, R.H. Mohring, F.J.

Radermacher and R. Serfozo for useful discussions and suggestions.

This research was partly carried out during a visit to RWTH Aachen,

supported by the DAAD. Partial support for this research was provided by

Grant AFOSR 84-0367.

A

-"9

• °



27

References

1. Ball, M.O. 1980. The Complexity of Network Reliability Computations.
Networks 10, 153-165.

2. Barlow, R.E. and F. Proschan. 1975. Statistical Theory of
Reliability and Life Testing: Probability Models. Holt Rhinehart
Winston, New York.

3. Devroye, L.P. 1979. Inequalities for Completion Times of
Stochastic Pert Networks. Math. Oper. Res. 4, 441-447.

4. Edmonds, J. and D.R. Fulkerson. 1970. Bottleaeck Extrema. J.
Combinatorial Th. 8, 299-306.

5. Elmaghraby, S.E. 1977. Activity Networks, Project Planning and
Control by Network Models. Wiley, New York.

6. Esary, J.D. and F. Proschan. 1970. A Reliability Bound for Systems
of Maintained, Interdependent Components. J. Amer. Statist.
Assoc. 65, 329-338.

7. Ford, L.R. and D.R. Fulkerson. 1962. Flows in Networks. Princeton
Univ. Press, Princeton.

8. Fulkerson, D.R. 1961. A Network Flow Computation for Project Cost
Curves. Man. Sci. 7, 167-178.

9. Hammersley, J.M. and J.G. Mauldon. 1956. General Principles of
Antithetic Variables. Proc. Camb. Philos. Soc. 52, 476-481.

10. Handscomb, D.C. 1958. Proof of the Antithetic Variate Theorem for
n > 2. Proc. Camb. Philos. Soc. 54, 300-301.

11. Klein Haneveld, W.K. 1982. Distributions with Known Marginals andS. Duality of Mathematical Programming with Application to PERT.
Technical Report 90 (OR-8203), Rijksuniversiteit, Groningen.

12. Kulkarni, V.A. and V.G. Adlakha. 1984. Markov and Markov
Regenerative Pert Networks. Technical Report U. North Carolina,
Chapel Hill, UNC/ORSA/TR-84-4.

13. Lawler, L.E. 1976. Combinatorial Optimization: Networks and
Matroids. Holt Rhinehart Winston, New York.

14. Meilijson, I. and A. Nddas. 1979. Convex Majorization with an
Application to the Length of Critical Paths. J. Appl. Prob. 16,
671-677.

15. Meilijson, I. 1984. Sharp Bounds on the Largest of Some Linear
Combinations of Random Variables with Given Marginal Distributions.
Technical Report.

16. Mdhring, R.H. and F.J. Radermacher. 1984. Substitution
Decomposition for Discrete Structures and Connections with
Combinatorial Optimization. Ann. Discrete Math. 19, 257-356.

Ui



28

17. Nddas, A. 1979. Probabilistic PERT. IBM J. Res. Develop. 23,
339-347.

18. Natvig, B. 1980. Improved Bounds for the Availability and
Unavailability in a Fixed Time Interval for Systems of Maintained,
Interdependent Components. Adv. Appl. Prob. 12, 200-221.

19. Neuts, M.F. 1981. Matrix Geometric Solutions in Stochastic Models.
Johns Hopkins, Baltimore.

20. Robillard, P. and M. Trahan. 1977. The Completion Time of PERT
Networks. Opns. Res. 25, 15-29.

21. Rosenthal, A. 1975. A Computer Scientist Look at Reliability
Computations. In Reliability and Fault Tree Analysis R.E. Barlow,
J.B. Fussel, D.D. Singpurwalla, Eds. SIAM Philadelphia, 133-152.

22. Shogan, A.W. 1977. Bounding Distributions for a Stochastic PERT
Network. Networks 7, 359-381.

23. Shogan, A.W. 1978. A Decomposition Algorithm for Network
Reliability Analysis. Networks 8, 231-251.

24. Stoyan, D. 1983. Comparison Methods for Queues and Other
Stochastic Models. Wiley, New York.

25. Valiant, L.G. 1979. The Complexity of Enumeration and Reliability
Problems. SIAM J. Comput. 8, 410-421.

26. Weiss, G. 1984. Stochastic Bounds on Distributions of Optimal
Value Functions with Applications to Pert, Network Flows and
Reliability. Ann. Oper. Res. 1, 59-65.

27. Whitt, W. 1976. Bivariate Distributions with Given Marginal. Ann.
Statist. 4, 1280-1289.

28. Zemel, E. 1982. Polynomial Algorithms for Network Reliability.

Networks 12.

L °,



* - ~* *

p

I

9'.

*.~.** 2* -' * * -,*.,


